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Phase Transitions in Dynamical Random Graphs
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We study a large-time limit of a Markov process whose states are finite graphs. The
number of the vertices is described by a supercritical branching process, and the dy-
namics of edges is determined by the rates of appending and deleting. We find a phase
transition in our model similar to the one in the random graph model Gn,p . We derive a
formula for the line of critical parameters which separates two different phases: one is
where the size of the largest component is proportional to the size of the entire graph,
and another one, where the size of the largest component is at most logarithmic with
respect to the size of the entire graph. In the supercritical phase we find the asymptotics
for the size of the largest component.

KEY WORDS: inhomogeneous random graphs; phase transitions.

1. INTRODUCTION

Graphs which are themselves undergoing local random changes in time are being
intensively studied over the last few years in probability theory. This class of
random processes has, besides its mathematical novelty, profound relations to
computer science, physics and biology (see, e.g., ref. 8). In fact, already in the end
of the 50ies Erdös and Rényi(10) predicted a wide range of possible applications
of non-homogeneous random graphs. A general class of Markov processes on
the dynamic graphs was introduced in ref. 13 along with some examples of non-
homogeneous graph models (see also ref. 14). In the recent years a number of
mathematical studies in this area was inspired by numeric or heuristic results from
physics: these are, e.g., results on a small-world model (ref. 22 later ref. 3), a
scale-free random graph (ref. 2 and later ref. 6), a uniformly randomly networks
(ref. 7 and later refs. 9 and 5).
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We consider a Markov process with states in the space of finite graphs with
multiple directed edges. The evolution of this process is described by the rates
of appending new vertices and edges, and the rate of deleting edges as follows.
Let V (t) and Ld (t) denote the sets of vertices and directed edges at time t ≥ 0,
correspondingly, with |V (0)| = 1, Ld (0) = ∅. Here the number of the vertices
|V (t)|, t > 0, is a random process itself, it is Yule process(1) with a parameter
γ > 0. This means, that with every vertex in the graph we associate a Poisson
process with intensity γ , every occurrence of which corresponds to the appearance
of a new vertex in the graph. In particular, this implies that E|V (t)| = eγ t and

|V (t)| e−γ t ⇒ ξ as t → ∞,

where ξ follows the Exp (1)-distribution (see, e.g., ref. 1). As soon as there are at
least two vertices in the graph, from each vertex we draw with intensity λ a new
edge to a vertex which we choose with equal probabilities among the rest of the
existing vertices in the graph. Any edge in the graph is deleted with intensity µ,
i.e., the lifetime of any edge is exponentially distributed with mean value 1/µ. We
assume that all the processes of appending and deleting are independent.

Here we study a non-directed simple (i.e., no multiple edges) graph, call it
G(t), naturally associated with the introduced model (V (t),Ld (t)) as follows. The
set of vertices of G(t) is the same set V (t), and there is an edge at time t between
any two vertices in the graph G(t), if and only if there is at least one edge in the
set Ld (t) between the same vertices. Let L(t) denote the set of edges of G(t).

This model is a certain subgraph of an original model introduced in ref. 13.
It was already indicated in ref. 13 that this model behaves similar to the classical
random graph Gn,p (see ref. 4) with p ∼ c/n. More exactly, for any fixed µ

and γ , if λ is sufficiently small then the largest connected component has at
most const × log |V (t)| vertices when t → ∞, while for all large values of λ the
largest component has const × |V (t)| number of vertices as t → ∞. However, the
inhomogeneity of the model requires more precise analysis rather than a simple
comparison with Gn,p model. In particular, when the parameters are close to their
critical values (described below), there is a positive fraction of vertices with mean
value of degree greater than one as well as a positive fraction of vertices with
mean value of degree less than one. Here we analyze the introduced model using
mainly the analogy with certain multi-type branching processes.

The important feature of this model is that it interpolates between two known
classes of models which have widely different properties. (See ref. 19 for the
details.) If we do not delete the edges in our model, i.e., letting µ = 0, we obtain
a continuous-time generalization of the uniformly grown network introduced in
ref. 7. On the other hand, when we let µ → ∞, and also 2λ/µ → c for some
constant c > 0, our graph behaves in the limit as Gn,p model with p = c/n. (This
was already shown in ref. 19, but one can also readily see it from the result (1.6)
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below, which in this case recovers the known equation β = 1 − e−cβ for the size
of the largest component of Gn,p.)

A detailed study of the distribution of edges in the G(t) presented in ref. 18
allowed in particular to derive a formula for the mean value of the number of
k-cycles in G(t). This led to the formula for the line of phase transition on the
state space of the parameters γ > 0, µ > 0, λ > 0 in ref. 19. It was conjectured
there that the phase transition should be similar to the second order phase tran-
sition in Gn,p model. Here we prove this conjecture, and find the asymptotics
of the size of the largest component in the supercritical case. Recall that a com-
ponent is any connected subgraph, which is not connected to any other vertex
in the rest of the graph, and the size of component is the number of vertices
in it.

To formulate our result we define for any γ > 0 and µ > 0

g(t, γ, µ) =
{

e(1− µ
γ )t −1

γ−µ
, if µ �= γ,

t/γ, if µ = γ.

Then we set

λcr (γ, µ) = 1

2
sup

{
x > 0 :

∞∑
k=2

xkE
k−1∏
i=1

g(ηi ∧ ηi+1, γ, µ) < ∞
}

(1.1)

where η1, . . . , ηk are independent random variables with a common Exp (1)-
distribution.

Theorem 1.1. Let γ > 0 and µ > 0 be fixed arbitrarily, and let X
(
G(t)

)
denote

the size of the largest component in G(t).

(I) If λ < λcr (γ, µ) then there exists a constant c = c(λ) such that

P{X (G(t)) > c log |V (t)|} → 0 as t → ∞.

(II) If λ > λcr (γ, µ) then for any ε > 0

P

{∣∣∣∣ X (G(t))

|V (t)| − β

∣∣∣∣ < ε

}
→ 1 as t → ∞, (1.2)

where

β =
∫ ∞

0
β̃(s)e−sds (1.3)
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with a function β̃(s), s > 0, defined as a positive solution to the following equation

1 = β̃(s) + exp

{
−2λ

∫ ∞

0
g(s ∧ τ, γ, µ)β̃(τ )e−τ dτ

}
. (1.4)

Remark 1.1 The constant β can be written in another way, namely,

β =
∫ ∞

0
β(s)γ e−γ sds (1.5)

with a function β(s), s > 0, defined as a positive solution to the following equation

1 = β(s) + exp

{
−2λ

∫ s

0
e−µτ

∫ ∞

τ

β(v)γ e−γ (v−τ )dvdτ

}
. (1.6)

Remark 1.2 The critical value λcr (γ, µ) is the smallest positive root of

H (x) = 1 +
∞∑

n=1

(−1)n

(
2x

µ

)n 1

n!

[
n∏

l=1

1

1 + (l − 1) µ/γ

]
. (1.7)

It is worth noticing a scaling property of our model, namely that a graph
G(t) = G(t, γ, µ) has the same distribution as a graph G(t/γ, 1, µ/γ ).

As it was already observed in, ref. 19 this model when µ = 0 behaves es-
sentially as a uniformly grown network in ref. 7. The last one is a discrete time
model. Clearly, one can reformulate our model and study a discrete time ana-
logue for all µ > 0 as well. Other related models were introduced and analyzed in
refs. 15 and 16 and 17 The continuous time models seem to be more natural for
the applications, e.g., in social science or biology (see ref. 21).

2. PROOF

2.1. Preliminary Results About the Graph G(t)

Here we recall the results of ref. 18 which we need in our proof. Consider
the graph G(t). Set τ1 = 0 and call τn , n ≥ 2, the consecutive moments of jumps
of the process |V (t)|, so that

|V (τn)| − |V (τn−)| = 1 and |V (τn)| = n.

Further we shall write

V (t) = {v0, vτ2 , . . . , vτ|V (t)|
}
, (2.1)

where for each vertex vs index s denotes the moment of appearance of this vertex
in the graph.
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Let us record a result from ref. 18 on the “most probable trajectory” of
(|V (s)|, 0 ≤ s ≤ t). For any S > 0 and T > � > 0 define a set of trajectories

A(S, T,�) (2.2)

=
{

(|V (s)|, 0 ≤ s ≤ T + S) :

∣∣∣∣ |V (S + (k + 1)�)|
|V (S + k�)| − (1 + γ�)

∣∣∣∣ ≤ �3/2,

0 ≤ k ≤
[

T

�

]
− 1

}
.

Then as it was proved in ref. 18 for any n ≥ 1

P{A(S, T,�) | |V (S)| = n} ≥
(

1 − γ

�2 n

)[ T
� ]

. (2.3)

This says that after have reached a large value (n), the number of vertices
increases almost deterministically, namely exponentially with rate γ . Making use
of the known results on Yule process (ref. 1, p. 109) we also get the formula

P {|V (S)| ≥ n} = (1 − e−γ S
)n−1

, n ≥ 1, S > 0. (2.4)

Combination of (2.3) and (2.4) gives us

P{A(S, T,�)} ≥
(

1 − γ

n�2

)T/� (
1 − e−γ S

)n−1
(2.5)

for all n ≥ 1. Choosing now T = t − √
t , S = √

t , n = eγ S/2 and � = n−1/6 we
derive from (2.5) for

A(t) = A(
√

t, t − √
t, e−γ

√
t/12)

that

P{A(t)} = 1 − o (e−t1/3
), as t → ∞. (2.6)

With a mild abuse of notation we shall write later on V (t) ∈ A(t), meaning

(|V (s)|, 0 ≤ s ≤ t) ∈ A(t).

Denote by pt (vs, vτ ) the probability of an edge between the vertices vs and
vτ in the graph G(t), given a set V (t) = V and vs, vτ ∈ V . Observe that in fact this
probability depends on the entire set V . As noted in ref. 18 conditional on the set of
vertices V (t) = V distributions of the edges are independent. Thus we introduce
independent Bernoulli random variables ξ (vs, vτ ) ∼ Be(pt (vs, vτ )), vs, vτ ∈ V , to
represent the edges of the graph with a set of vertices V (t) = V . It is shown in
ref. 18 that conditionally on V (t) = V ∈ A(t) one has

pt (vs, vτ ) = 2λ g(γ (t − s ∨ τ ), γ, µ)
1

|V (t)| (1 + ε(s ∨ τ, t)) , (2.7)
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where ε(t ′, t) → 0 when t ′ ≥ t1/2 and t → ∞, and also

pt (vs, vτ ) < Bλ (g(γ (t − s ∨ τ ), γ, µ) + 1)
1

|V (t)| (2.8)

for some B = B(γ, µ) > 0.
Note that when t → ∞ most of the vertices vs in our graph satisfy condition

s ≥ √
t , more precisely according to (2.4) and the definition of A(t) we have

P{|V (
√

t)| ≥ |V |7/12|V (t) ∈ A(t)} = o(1) (2.9)

as t → ∞. Therefore formula (2.7) is mostly used here.

2.2. Revealing a Connected Component

Note that the distribution of edges in graph G(t) is derived conditionally on
the set V (t). Given V (t) we shall find a connected component in a sample of the
correspondent random graph G(t). We use a well-known method of branching
processes naturally associated with random graph (see, e.g., ref. 12 or more recent
ref. 11). More precisely, we shall modify an algorithm from ref. 11 to take into
account the non-homogeneity of our graph. Fix an arbitrary vertex v1 = v ∈ V (t)
to be the root. Add to this root all the neighbours of v, i.e., the vertices connected
to the vertex v by one edge in the graph G(t), denote them W1(v) = {vs1 , . . . , vsk }.
We call set W1(v) the first generation of v. Mark v as saturated. This finishes the
first step of the algorithm resulting in a tree with a set of vertices {v, vs1 , . . . , vsk }
and a set of edges {(v, vs1 ), . . . , (v, vsk )}; call this tree T1(v).

Let Tn(v) denote the tree we have constructed after the n-th step of this
algorithm. We say that the distance between the root and any other vertex of this
tree is k, if there are exactly k edges between them. All the vertices at distance k
from the root we call the k-th generation of v. At the (n + 1)-st step we choose
a non-saturated vertex vn+1 = vs which has the largest index s among the closest
to the root v vertices. Find all the neighbours of vs among the vertices not used
previously in the algorithm, call their set Wn+1(vs), and mark vertex vs as saturated.
Finally, add the set Wn+1(vs) to the set of vertices of Tn(v), then add all the edges
from vs with ends in the set Wn+1(vs) to the set of edges of Tn(v), and call the
new graph Tn+1(v). This finishes the (n + 1)-st step of our algorithm. Continue
this process until we end up with a tree consisting of saturated vertices only, call
it T (v). Observe, that given a graph G(t) and a vertex v the tree T (v) is defined
uniquely.

Clearly, the number of offspring we assign to a vertex vn = vn
s at the n-th

step depends on the set of vertices that has been used, and on the vertex vn
s itself,

more exactly, on s. Call this number ζn(vn
s ) = ζn(vn

s ,G(t)).
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2.3. Subcritical Case: λ < λcr (γ,µ)

We shall prove the first part of Theorem 1.1. Here we explore a multi-type
branching process approach. (Notice that our method when applied to the Gn,p=c/n

model with c < 1 provides a short and a simple way to get an optimal upper bound
for the size of the largest component.(20))

Fix γ > 0, µ > 0 and λ < λcr (γ, µ) arbitrarily. We shall use the following
obvious bound

P{X (G(t)) ≥ N | V (t) = V } ≤
∑
v∈V

P{|T (v)| ≥ N | V (t) = V }, (2.10)

provided P{V (t) = V } > 0.
Let us define now a multi-type branching process where the individuals are

independent of others, with V being the set of all possible types in the population.
Any individual of type v produces an offspring of any type u with probability
pt (v, u), independent of producing other types, but only one of each type. Suppose,
we have at generation zero one ancestor of type v fixed arbitrarily. Set Y0(v) = 1,
and let Yn(v), n ≥ 1, denote the number of offspring of an individual of type v in
the n-th generation. Clearly,

P{|T (v)| ≥ N | V (t) = V } ≤ P

{ |V |∑
k=1

Yk(v) ≥ N − 1

}
(2.11)

for any N > 0. Let n > 1 be fixed arbitrarily. We can bound the right-hand side of
(2.11) using the generalized Chebyshev inequality:

P

{ |V |∑
k=1

Yk(v) ≥ N − 1

}
≤ P

{
n−1∑
i=1

Yi (v) ≥ N − 1

n + 1

}

+
n−1∑
j=0

P

{ |V |∑
i=0

Yn+ j+in(v) ≥ N − 1

n + 1

}

≤ h− N−1
n+1

(
Eh

∑n−1
i=1 Yi (v) +

n−1∑
j=0

Eh
∑|V |

i=0 Yn+ j+in (v)

)
(2.12)

for any h ≥ 1. In the following we will show that for some finite n and h > 1 each
of the generating functions in (2.12) is uniformly bounded in v and V .

We start with the following proposition, which together with its counterpart
for the supercritical case (Proposition 2.2 below) sheds a light on the transition at
λcr in the structure of graph.
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Proposition 2.1. For any λ < λcr there exist finite n0, T > 0 and c < 1 such
that for all k ≥ n0, and for all t ≥ T and V ∈ A(t)

EYk(v) ≤ c < 1, v ∈ V . (2.13)

Proof: First we fix t , V ∈ A(t), v ∈ V and k ≥ 3 arbitrarily. Let then ξ (u, v),
u �= v, u, v ∈ V , denote Bernoulli random variables Be(pt (u, v)), independent for
different pairs (u, v). Let further ξn(u, v), n ≥ 1, be independent copies of ξ (u, v).
We shall also set ξn(v, v) ≡ 0 for all v ∈ V , n ≥ 1. Then for any n ≥ 1 we have

Yn(v) = d

∑
u1∈V

ξ1(v, u1)Yn−1(u1) = d

∑
u1,...,un∈V n

ξ1(v, u1) . . . ξn(un−1, un).

(2.14)
Hence,

EYk(v) =
∑

u1,...,uk∈V

pt (v, u1) . . . pt (u
k−1, uk). (2.15)

Define now

θ (t, γ, µ) = g(γ t, γ, µ)e−γ t .

Assume, v = vs0 for some 0 < s0 = t − τ0 < t . Consulting for the details ref. 18
one can find with the help of (2.7) that (2.15) equals

EYk(vs0 ) = (2λγ )k

∫ t

0
. . .

∫ t

0

( k∏
i=1

exp {−γ (si−1 ∨ si )}

× θ (t − (si−1 ∨ si ), γ, µ)eγ si

)
dsk . . . ds1 + ε(t), (2.16)

where ε(t) → 0 as t → ∞. For simplicity we shall write further θ (t, γ, µ) = θ (t)
and g(t, γ, µ) = g(t). Making a change of variables γ (t − si ) → si in the integral
we rewrite the last formula as

EYk(vt−τ0 ) = (2λ)k
∫ γ t

0
. . .

∫ γ t

0
g(γ τ0 ∧ s1) e−s1

(
k∏

i=2

g(si−1 ∧ si ) e−si

)
× dsk . . . ds1 + ε(t)

= (2λ)k Eg(γ τ0 ∧ η1)
k−1∏
i=1

g(ηi ∧ ηi+1) + ε(t), (2.17)

where η1, . . . , ηk are independent random variables with a common Exp(1)-
distribution.
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Let us fix now s > 0 arbitrarily and compare two functions F(k) and F(s, k)
defined as follows

F(k) = E
k−1∏
i=1

g(ηi ∧ ηi+1), k ≥ 2,

and

F(s, 2) = E g(s ∧ η2), F(s, k) = E g(s ∧ η2)
k−1∏
i=2

g(ηi ∧ ηi+1), k > 2.

Straightforward computations yield

F(2) = 1

µ + γ
and F(s, 2) = 1

µ

(
1 − e− µ

γ
s)

. (2.18)

Note that for all k ≥ 2 we have

F(s, k + 1) =
∫ ∞

0
g(s ∧ t)e−t F(t, k) dt. (2.19)

We claim that

F(s, k) =
k−2∑
n=1

(−1)n+1

(
1

µ

)n 1

n!

[
n∏

l=1

1

1 + (l − 1) µ/γ

]
F(s, k − n)

+ (−1)k

(
1

µ

)k−1 1

(k − 1)!

[
k−1∏
l=1

1

1 + (l − 1) µ/γ

] (
1 − e−(k−1) µ

γ
s)

=:
k−2∑
n=1

bn F(s, k − n) + bk−1ak(s) (2.20)

for all k ≥ 2 (setting a sum over an empty set of indices to be zero). Indeed, in the
case k = 2 this is given by (2.18). Let m ≥ 2 and assume that (2.20) holds for all
2 ≤ k ≤ m. Then applying the linear integral operator with kernel g(s ′ ∧ s)e−s to
both sides of (2.20) with k = m and using (2.19), we derive that (2.20) holds for
k = m + 1 as well. This proves our claim.

Now taking into account (2.20) and relations

F(k + 1) =
∫ ∞

0

∫ ∞

0
e−t g(t ∧ s)e−s F(s, k) ds dt

for all k ≥ 2, we derive also

F(k) =
k−2∑
n=1

bn F(k − n) + bk−1ak, (2.21)
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where

ak =
∫ ∞

0
e−s
(
1 − e−(k−1) µ

γ
s) ds.

Consider now

F̃(x) :=
∞∑

k=3

F(k)xk

and

F̃(s, x) :=
∞∑

k=3

F(s, k)xk .

From (2.21) we derive

F̃(x)

(
1 −

∞∑
k=1

bk xk

)
= F(2)x2

( ∞∑
k=1

bk xk

)
+
( ∞∑

k=3

bk−1ak xk

)
(2.22)

for all x such that F̃(x) converges, and similarly from (2.20) we derive

F̃(s, x)

(
1 −

∞∑
k=1

bk xk

)
= F(s, 2)x2

( ∞∑
k=1

bk xk

)
+
( ∞∑

k=3

bk−1ak(s)xk

)
.

(2.23)

Recall that according to the definition (1.1) of λcr the power series F̃(x)
converges for all 0 < x < 2λcr . This due to (2.22) (notice also that all 0 < ak < 1)
is equivalent to the condition

min

{
x > 0 :

∞∑
k=1

bk xk = 1

}
= 2λcr .

(Hence, formula (1.7) follows.) Since also all 0 ≤ ak(s) < 1, this together with
(2.23) allows us to conclude that for all 0 < x < 2λcr the series F̃(s, x) converge
uniformly in s ≥ 0. This implies that for any λ < λcr there are some positive
constants A and α such that

(2λ)k F(s, k) < Ae−αk

uniformly in s ≥ 0. Substituting this into (2.17) we readily get the statement of
the proposition. �

Now we shall study the properties of the generating functions of Yn(v), v ∈ V ,
n ≥ 1, call them

[g(n),V (h)](v) = EhYn (v), h ≥ 0.
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According to (2.14)

[g(1),V (h)](v) =
∏
u∈V

(1 + pt (v, u)(h − 1)) . (2.24)

We shall also define g(1),V as an operator on the space of positive vector-
functions f = ( f (u), u ∈ V ), so that

[g(1),V ( f )](v) =
∏
u∈V

(1 + pt (v, u)( f (u) − 1)), v ∈ V .

Then by recurrence we have for any constant h > 0 and n ≥ 1[
g(n),V (h)

]
(v) = [g(1),V (g(1),V (. . . (h)))

]
(v). (2.25)

Observe an obvious property of monotonicity of the operator g(n),V : whenever
f1 ≤ f2, i.e., if f1(u) ≤ f2(u) for all u ∈ V , then

g(n),V ( f1) ≤ g(n),V ( f2). (2.26)

Proposition 2.1 and the properties of generating functions imply

∂

∂h

[
g(k),V (h)

]
(v)
∣∣∣
h=1

= EYk(v) ≤ c < 1 (2.27)

for all k ≥ n0.
Let

Zk(v) =
k∑

i=1

Yi (v), k ≥ 1,

and Z0(v) ≡ 0. From now on we fix n = n0 with the constant n0 defined in
Proposition 2.1. We shall use property (2.27) of operator g(n0),V to continue the
bound (2.12), which we rewrite in new notations as

P
{

Z |V |(v) ≥ N − 1
} ≤ h− N−1

n+1

(
EhZn−1(v) +

n−1∑
j=0

Eh
∑|V |

i=0 Yn+ j+in (v)

)
. (2.28)

Let us fix 0 ≤ j ≤ n − 1 arbitrarily and consider for k ≥ 1

Zk, j (v) =
k∑

i=0

Yn+ j+in(v) =d

∑
(u1,...,un+ j )∈V n+ j

ξ1(v, u1) . . . ξn+ j (un+ j−1, un+ j )

× (1 + Z̃k(un+ j )
)
, (2.29)

where ξi (v, u), Z̃k(w), v, u, w ∈ V , i ≥ 1, are independent, and

Z̃k(w) =d

k∑
i=1

Yin(w).
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Set also Z̃0(w) ≡ 0.

Lemma 2.1. There exists h0 > 1 such that for all 1 ≤ h ≤ h0

EhZ̃k (v) < C (2.30)

for some constant C uniformly in k ≥ 1, v ∈ V , and V (t) = V ∈ A(t), t ≥ T .

Proof: Write for k ≥ 1

Z̃k(v) =d

∑
(u1,...,un )∈V n

ξ1(v, u1) . . . ξn(un−1, un)(1 + Z̃k−1(un)),

where ξi (v, u), 1 ≤ i ≤ n, Z̃k−1(w), v, u, w ∈ V , are independent. This gives us
the following recurrent formula

[̃gk(h)](v) ≡ EhZ̃k (v) = [g(n),V (h [̃gk−1(h)])
]

(v). (2.31)

Set further

||g(n),V (h)|| = max
v∈V

[g(n),V (h)](v).

Since for each v ∈ V the generating function [g(n),V (y)](v), y ≥ 0, is convex and
increasing in y ≥ 0, ||g(n),V (y)|| is also convex in y ≥ 0. By (2.27) we have

∂

∂h
[g(n),V (h)](v)

∣∣∣
h=1

≤ c < 1. (2.32)

One can also show, using again (2.7), that for any fixed h1 > 1 and all
h ∈ [1, h1]

∂2

∂h2
[g(n),V (h)](v) ≤ K (2.33)

for some K > 0. Both (2.32) and (2.33) hold uniformly in V (t) = V ∈ A(t),
t ≥ T , and v ∈ V . All these facts, namely, convexity and the last two bounds, imply
the existence of a unique h0 = h0(V ) > 1, which is the largest number such that the
line y/h0 has a (unique) common point y0 = y0(V ) with the curve ||g(n),V (y)||,
y > 0. Observe that since the bounds (2.32) and (2.33) are uniform, we have
lim inf V ∈A(t), t≥T h0(V ) = h̄ > 1, and also lim supV ∈A(t), t≥T y0(V ) = ȳ < ∞
due to formula (2.7).

Clearly, ||g(n),V (y0)|| ≥ 1. This yields

||g(n),V (y0)|| = y0/h0 ≥ 1. (2.34)

Now due to monotonicity property (2.26) and by (2.34) we have for all
1 ≤ h ≤ h0

||g(n),V (h)|| ≤ ||g(n),V (h0)|| ≤ ||g(n),V (y0)|| = y0/h0, (2.35)
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and thus again by the monotonicity for all 1 ≤ h ≤ h0

||g(n),V (h[g(n),V (h)])|| ≤ ||g(n),V

(
h

y0

h0

)
|| ≤ ||g(n),V (y0)|| = y0/h0, (2.36)

implying due to (2.31)

[̃gk(h)](v) ≤ y0/h0, (2.37)

for all 1 ≤ h ≤ h0. This proves (2.30), since for all V ∈ A(t), t ≥ T , we have
y0/h0 ≤ ȳ/h̄. �

With a help of bound (2.30) we derive further from (2.29)

EhZk, j (v) = [g(n+ j),V (h [̃gk(h)])](v) ≤ [g(n+ j),V (h y0/h0)](v) ≤ C1 (2.38)

for all 0 ≤ j ≤ n − 1 and 1 ≤ h ≤ h0 uniformly in k ≥ 1, v ∈ V , V ∈ A(t) and
t > T , which together with (2.28) yield

P
{

Z |V |(v) ≥ N − 1
} ≤ h

− N−1
n+1

0 (C2 + nC1) (2.39)

for some constant C2 > 0, and all V ∈ A(t) and t > T . Now we use this bound in
(2.11), and substituting the result into (2.10) we finally get

P{X (G(t)) ≥ N | V (t) = V } ≤ |V | h
− N−1

n+1

0 (C2 + nC1) (2.40)

for all V ∈ A(t) and t > T . It is clear, that for some constant c > 0 whenever
N ≥ c log |V |, the right-hand part of (2.40) goes to zero as |V | → ∞. Now taking
into account the definition of A(t) together with asymptotics (2.6) and (2.4), we
readily get the first statement of Theorem 1.1.

2.4. Supercritical Case: λ > λcr (γ,µ)

Now we turn to the second part of our theorem. We shall follow the branching
processes approach used in ref. 11, but taking into account the non-homogeneity
of our model.

2.4.1. Uniqueness of a Giant Component

First we will show that the probability of having in G(t) a component of
a size between k− := a log |V (t)| and k+ := |V (t)|2/3, where a is some positive
constant, goes to zero as t → ∞. To simplify further notations let C(t) denote
a connected component in graph G(t), as well as its set of vertices. We want to
bound

P(t) := P{there exists C(t) with k− ≤ |C(t)| ≤ k+}.
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Clearly, due to (2.4) and (2.6) we have for any fixed δ > 0

P(t) = P{there exists C(t) with k− ≤ |C(t)| ≤ k+ and C(t) ∩ V (t − δ) �= ∅
(2.41)

| V (t) ∈ A(t) and |V (t)| > eγ
√

t/2}
+ P{C(t) ∩ V (t − δ) = ∅ for any C(t) with k− ≤ |C(t)| ≤ k+

| V (t) ∈ A(t) and |V (t)| > eγ
√

t/2} + o(1)

=: P1(t) + P2(t) + o(1),

as t → ∞.
Consider first the second term P2(t). Observe, that formula (2.7) gives us

conditionally on V (t) = V with V ∈ A(t) the following bound for all t − δ ≤ s ≤
t and u ∈ V

pt (vs, u) ≤ Cλ

|V | δ, (2.42)

where C is some positive constant independent of choice of V . From now on fix

δ = (2Cλ)−1. (2.43)

Recall that in classical Gn,p model with p = 1/(2n) the largest connected
component is at most a2 log n for some absolute constant a2, with probability
tending to one as n → ∞. This together with bound (2.42) implies that any
connected component of G(t) if it consists only of the vertices of the set V (t) \
V (t − δ), has with a high probability (as t → ∞) size at most a2 log |V (t)|. Hence,
if the constant a in the definition of k− is such that a ≥ 2a2, and δ = (2Cλ)−1 we
have

P2(t) = o(1) (2.44)

as t → ∞.
To bound P1(t) we shall use an algorithm similar to the one introduced in

Sec. 2.2. Let us fix

V ∈ A(t) with V (t − δ) = Vδ and |V | > eγ
√

t/2 (2.45)

arbitrarily. Conditionally on V (t) = V we shall reveal in graph G(t) a connected
component which contains vertex v as follows. Let us fix a number n ≥ 1 (to be
chosen later on). Then at the first step we reveal not only all the neighbours of
v = v1, but also all the vertices at distance up to n from v1. As previously, we
begin with the vertices which are closest to v1 and have the largest index (i.e., the
youngest in the graph). Call v saturated and proceed to the second step. At each
k > 1 step find among the non-saturated revealed vertices a vertex vs closest to
the root v and with the largest index s, call it vk . If none of non-saturated revealed
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vertices is left we stop the algorithm. Otherwise, reveal all the vertices at distance
n from vk . (Notice, that all the vertices at distance less than n from vk are already
revealed at the previous step.) Then call vk saturated, and proceed to the k + 1
step.

In particular, if n = 1, this algorithm repeats the one in Sec. 2.2.
Let T n

k (v) denote a tree after the k-th step of this new algorithm, and let |T n
k (v)|

denote the total number of vertices in this tree (including the non-saturated).
Notice, that according this definition |T n

k (v)| contains at least k different (saturated)
vertices. Otherwise, T n

k (v) is not defined.
It is easy to see that for any n ≥ 1 and c0 > 0

P{ there exists C(t) with k− ≤ |C(t)| ≤ k+ and C(t) ∩ V (t − δ) �= ∅ (2.46)

| V (t) = V and V (t − δ) = Vδ}

≤ k+ max
k−≤k≤k+

P{#{ non-saturated vertices in T n
k (v)} < c0k for some v ∈ V (t − δ)}

≤ k+ max
k−≤k≤k+

|V | max
v∈Vδ

P{#{ non-saturated vertices in T n
k (v)} < c0k}.

Let {v = v1, . . . , vk} be the consecutively saturated vertices in T n
k (v), and let

then ζn,i (vi ), 1 ≤ i ≤ k, denote the number of offspring of the n-th generation of
a saturated vertex vi . We shall use the following result.

Proposition 2.2. For any λ > λcr there exist finite n, T > 0 and c > 1 such that
for all t ≥ T , V ∈ A(t) with V (t − δ) = Vδ , and v ∈ Vδ

E
k∑

i=1

ζn,i (v
i ) ≥ ck for any 1 ≤ k ≤ k+ = |V |2/3. (2.47)

The proof of this result is very similar to the proof of Proposition 2.1, therefore
we omit it here for the sake of brevity. We shall only explain why we need here a
condition v ∈ V (t − δ). Recall that the main term of the asymptotics of (2.16) as
t → ∞ is

(2λ)k F(γ (t − s0), k),

which is zero if s0 = t . To bound it by a positive constant from below, we consider
only 0 ≤ s0 ≤ t − δ.

Lemma 2.2. Under conditions (2.45) let T n
k (v) denotes a tree with n defined in

Proposition 2.2. There exist positive constants a1 and c0 (independent of V and
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Vδ) such that for all

a1 log |V | ≤ k ≤ k+ = |V |2/3 (2.48)

we have

|V |k+ max
v∈Vδ

P
{
#
{

non-saturated vertices in T n
k (v)

}
< c0k

}→ 0, (2.49)

as |V | → ∞.

Proof: Let us fix v ∈ Vδ arbitrarily. Let ζl,1(v1), 1 ≤ l < n, denote the number of
offspring of the l-th generation of a saturated vertex v = v1 in our process T n

k (v).
Clearly,

|T n
k (v)| = 1 +

n−1∑
l=1

ζl,1(v1) +
k∑

i=1

ζn,i (v
i ),

and the number of non-saturated vertices in T n
k (v) equals |T n

k (v)| − k. Then we
derive for any c0 > 0

P
{|T n

k (v)| − k < c0k
} = P

{
1 +

n−1∑
l=1

ζl,1(v1) +
k∑

i=1

ζn,i (v
i ) < k + c0k

}
.

(2.50)
Proposition 2.2 allows us to bound the last probability as follows

P
{|T n

k (v)| − k < c0k
}

≤ P

{
k∑

i=1

ζn,i (v
i ) < E

{
k∑

i=1

ζn,i (v
i )

}
− (c − 1 − c0)k

}
. (2.51)

Next we define for all m ≥ 1

ζ+
m,i (v

i ) =
∑

(u1,...,um )∈V m

ξ 1
i (vi , u1) . . . ξm

i (um−1, um),

where ξ
j

i (u, v) are independent copies of the random variables ξ (u, v) introduced
above. Notice that for all 1 ≤ i ≤ k

Eζn,i (v
i ) ≤ Eζ+

n,i (v
i ) ≤ C1 (2.52)

for some constant C1 independent of V , which follows from asymptotics (2.17).
Choose from now on c0 = (c − 1)/2. Then using the condition k < |V |2/3 together
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with (2.7)–(2.8) and (2.52) we derive

P

{
k∑

i=1

ζn,i (v
i ) < E

{
k∑

i=1

ζn,i (v
i )

}
− (c − 1 − c0)k

}

≤ e−kc1 + P

{
k∑

i=1

ζ+
n,i (v

i ) < E

{
k∑

i=1

ζ+
n,i (v

i )

}
− (c − 1)k/4

}
(2.53)

for some c1 > 0 and all large k. The technique of concentration inequalities (see,
e.g., ref. 11 Sec. 2.1) enables one to bound the last probability from above by e−c2k

for all large k and some positive constant c2. Using this in (2.51) we derive for any
a1 log |V | ≤ k ≤ k+

|V | k+P
{|T n

k (v)| − k < c0k
} ≤ |V |k+ e−c2 k− = |V |5/3 |V |−c2a1 . (2.54)

Choosing now a1 = 2/c2, we readily get the statement (2.49) of the lemma.
Lemma 2.2 together with (2.46) yields that if in (2.41) we have a1 log |V (t)| ≤

k− ≤ k+ then

P1(t) = o(1) as t → ∞. (2.55)

Now choosing a = max{a1, 2a2} and setting

k− = a log |V (t)|
we have both (2.44) and (2.55). This together with (2.41) proves that the probability
P(t) of having in G(t) a component of a size between k− = a log |V (t)| and k+
goes to zero as t → ∞.

Now we will prove that there may exist at most one component of size
|V (t)|2/3 in G(t) as t → ∞. We shall use the idea from, ref. 11 p.110. Given
V (t) = V ∈ A(t) with V (t − δ) = Vδ , where δ satisfies (2.43), suppose that we
have two trees T n

k+(v) and T n
k+(v′) (constructed as above on the graph with vertices

V ) with v ∈ Vδ and v′ ∈ Vδ . Assume these trees do not have common vertices,
and their sets of the non-saturated vertices are U and U ′, respectively. As we just
showed in the last lemma, |U |, |U ′| ≥ c0k+ with a high probability. Note that the
size of any connected component in V \ Vδ is with a high probability at most
a2 log |V | (see the argument which led to (2.44)). Hence, to contribute into a tree
of a size k+, any component in V \ Vδ should be connected to at least one vertex
in Vδ . Recall that bound (2.42) is also valid for a probability of an edge between
any vertex in V \ Vδ and V . Therefore the probability that there is a vertex in Vδ

which is connected to more than, say log |V | different vertices in V \ Vδ , goes to
zero as |V | → ∞. This gives us the following bound

P

{
|U ∩ Vδ| >

c0k+
2a2(log |V |)2

}
= 1 − o(1) (2.56)
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as |V | → ∞, and a similar bound holds of course for U ′. If s ∨ τ ≥ √
t , then by

(2.7) we have

pt (vs, vτ ) ≥ b

|V | (2.57)

for some positive constant b and all vs, vτ ∈ V (t − δ). By (2.9) we have

P
{

#{vs ∈ U : s ≤ √
t} ≥ |V |7/12

∣∣∣ V (t) ∈ A(t)
}

(2.58)

≤ P
{
|V (

√
t)| ≥ |V |7/12

∣∣∣ V (t) ∈ A(t)
}

= o(1)

as t → ∞, and similarly for U ′.
Observe that the probability that there are no edges between non-saturated

vertices of the trees T δ
k+(v) and T δ

k+(v′) with given sets U, U ′ is∏
vs∈U,vτ ∈U ′

(1 − pt (vs, vτ )).

Therefore taking into account (2.56), (2.58) and (2.57) we obtain the follow-
ing upper bound for the probability that there are no edges between non-saturated
vertices of T δ

k+(v) and T δ
k+(v′):(

1 − b

|V |
)|V |7/6

+ o(1) = o(1) as |V | → ∞.

This together with (2.4) and (2.6) implies that the probability of having more
than one component of the size |V (t)|2/3 in G(t) goes to zero as t → ∞.

Hence, with a probability tending to one as t → ∞, every vertex of a subgraph
G(t) either belongs to some component of size at most k− = a log |V (t)|, or it
belongs to a unique giant component, call it C(t), of size |C(t)| = X (G(t)) ≥
|V (t)|2/3.

2.4.2. The Expectation of the Size of Giant Component

According to (2.6) for any β > 0 and ε > 0 we have

P

{∣∣∣∣ X (G(t))

|V (t)| − β

∣∣∣∣ < ε

}
=
∑

V ∈A(t)

P

{∣∣∣∣ X (G(t))

|V (t)| − β

∣∣∣∣ < ε | V (t) = V

}
P {V (t) = V } + o(1) as t → ∞. (2.59)

Therefore, till the end of the proof we fix V ∈ A(t) arbitrarily, and consider
all the following events and probabilities conditionally on V (t) = V . Correspond-
ingly, we shall denote P {· | V (t) = V } = PV {·}.
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Define for all vs ∈ V

χ (vs) =
{

1, if vs �∈ C(t),

0, otherwise.

Then we have

X (G(t)) = |V | −
∑
vs∈V

χ (vs). (2.60)

Note that

q(t, vs) = PV {χ (vs) = 1}
differs by at most o(1) (as |V | → ∞) from the probability, that process
T n

k (vs), k ≥ 1, stops before it accumulates k− vertices. Call the last probability
q ′(t, vs).

Let further q−(t, vs) denote the probability of extinction of multi-type branch-
ing process {Yk(vs), k ≥ 1, } defined in Sec. 2.3. Clearly, q−(t, vs) ≤ q ′(t, vs)
simply because T n

k (vs) may contain only once any vertex in V , unlike Yk(vs).
Also for any U ⊂ V let us introduce (similar to the process Yk(vs)) a multi-type
branching process Y U

k (vs), k ≥ 1, with the set of types being the set V \ U . In
this process a vertex of type v produces offspring of any type u with probability
pt (v, u), independent of producing other types, but only one of each type. Let fur-
ther q+

U (t, vs) denote the probability of extinction of the process Y U
k (vs). Clearly,

the introduced probabilities are related as follows

q−(t, vs) − |o(1)| ≤ q(t, vs) ≤ max
U⊂V :|U |=|V |2/3

q+
U (t, vs) + |o(1)|. (2.61)

Consider first

q−(t, vs) =
∏
v∈V

(1 − pt (vs, v))

+
|V (t)|−1∑

k=1

∑
W⊂V :|W |=k

(∏
u∈W

pt (vs, u)q−(t, u)

)(∏
u �∈W

(1 − pt (vs, u))

)
.

(2.62)

Using (2.7)–(2.8) we derive for all |W | ≤ |V |2/3

∏
v∈V \W

(1 − pt (vs, v)) = exp

{
−
∑
u∈V

pt (vs, u)

}
+ o(1), (2.63)



1026 Turova

as |V | → ∞. This together with (2.62) implies

q−(t, vs)

= e−
∑

u∈V pt (vs ,u)

1+
|V |2/3∑
k=1

∑
0<s1<s2<...<sk<t :vsi ∈V

k∏
i=1

pt (vs, vsi )q
−(t, vsi )

+ o(1)

= e−∑u∈V pt (vs ,u)

1 +
|V |2/3∑
k=1

1

k!

(∑
u∈V

pt (vs, u)q−(t, u)

)k
+ o(1)

= e−∑u∈V pt (vs ,u)(1−q−(t,u)) + o(1) (2.64)

as |V | → ∞.
From (2.64) we derive with the help of (2.7)–(2.8), (2.2) and (2.6) that

q−(t, vs) = q−(t, s) + o(1)

as t → ∞, where function q−(t, s) satisfies for all 0 ≤ s ≤ t

q−(t, s) = exp

{
−
∫ t

0

(
1 − q−(t, τ )

)
2λ g(t − s ∨ τ )

γ eγ τ

eγ t
dτ

}
+ o(1) (2.65)

= exp

{
−2λ

∫ t

0

(
1 − q−(t, τ )

) e(γ−µ)(t−s∨τ ) − 1

γ − µ
γ e−γ (t−τ )dτ

}
+ o(1).

Similarly, one can get for all U ⊂ V with |U | < |V |2/3

q+
U (t, vs) = q−(t, s) + o(1)

as |V | → ∞. This together with (2.61) implies in turn

q(t, vs) = q−(t, s) + o(1), (2.66)

as |V | → ∞.
Now we consider

EV X (G(t)) = |V | −
∑
vs∈V

q(t, vs) = |V |
∑
vs∈V

1

|V | (1 − q(t, vs)).

This with the help of (2.2), (2.6) and (2.66) leads to

EV X (G(t)) = |V |
(∫ t

√
t
γ e−γ (t−s)(1 − q−(t, s))ds + o(1)

)
(2.67)

as t → ∞, |V | → ∞.
Setting βt (s) = 1 − q−(t, s), we get from (2.65)

1 = βt (s) + exp

{
−2λ

∫ t

0
βt (τ )

e(γ−µ)(t−s∨τ ) − 1

γ − µ
γ e−γ (t−τ )dτ

}
+ o(1) (2.68)
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as t → ∞. After some straightforward computation we can rewrite (2.68) as
follows

1 = βt (s) + exp

{
−2λ

∫ t

s
e−µ(t−τ )

∫ τ

0
βt (v)γ e−γ (τ−v)dvdτ

}
+ o(1). (2.69)

Replacing s by t − s in the last formula we get

1 = βt (t − s) + exp

{
−2λ

∫ t

t−s
e−µ(t−τ )

∫ τ

0
βt (v)γ e−γ (τ−v)dvdτ

}
+ o(1)

(2.70)

= βt (t − s) + exp

{
−2λ

∫ s

0
e−µτ

∫ t

τ

βt (t − v)γ e−γ (v−τ )dvdτ

}
+ o(1),

as t → ∞. From here it follows, that for all t > s + C and all C > 0 we have

1 = βt (t − s) + exp{
−2λ

∫ s

0
e−µτ

(∫ C+τ

τ

βt (t − v)γ e−γ (v−τ )dv + o(e−γ C/2)

)
dτ

}
+ o(1)

as t → ∞. Notice also, that by its definition βt (t) ≡ 0 for all t . Hence, for any
fixed s there is

β(s) := lim
t→∞ βt (t − s),

which satisfies

1 = β(s) + exp

{
−2λ

∫ s

0
e−µτ

∫ ∞

τ

β(v)γ e−γ (v−τ )dvdτ

}
. (2.71)

Setting now

β̃(s) = β(s/γ ),

we derive from (2.68) and (2.71) that β̃(s) satisfies Eq. (1.4), which is

1 = β̃(s) + exp

{
−2λ

∫ ∞

0
β̃(τ )g(τ ∧ s, γ, µ)e−τ dτ

}
. (2.72)

Furthermore, it follows from the approximation by the supercritical multi-
type branching processes that β̃ must be positive.

Next we shall shortly explain that Eq. (2.72), equivalently (1.4), has a unique
positive (for all s > 0) solution for any fixed λ > λcr . This will allow us to derive
from (2.67) using (2.71) (or (2.72) that

EV X (G(t)) = |V | (β + o(1)) (2.73)

as |V | → ∞, with β defined as in (1.5) (or in (1.3)).
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2.4.3. Uniqueness of Positive Solution to (1.4)

Let us rewrite Eq. (2.72) as

f (s) = 1 − e−2λ A[ f ](s) =: H[ f ](s), s ≥ 0, (2.74)

where

A[ f ](s) =
∫ ∞

0
g(s ∧ τ, γ, µ) f (τ )e−τ dτ.

First we observe that any positive function which satisfies (2.72) (or (2.74))
belongs to the following class of functions

K := {(h(s), s ≥ 0) : h ∈ C2, h′(s) > 0, h(0) = 0, lim
s→∞ h(s) ≤ 1},

where

H : K → K. (2.75)

Introduce a norm ||h|| = sups≥0 h(s) on K.
Considering asymptotics similar to (2.17) and exploiting the properties of

function g(t) = g(t, γ, µ) (in particular, that g′(0) = 1/γ > 0), one can show that
for any λ > λcr and for any h ∈ K there exist C > 1 and positive constants c and
c1 such that

cCkh(s) ≤ (2λ A)k[h](s) ≤ c1(2C)k ||h|| (2.76)

for all k ≥ 1. The last upper bound implies in particular, that

H[h](s) = 2λ A[h](s) + O
(||h||2) (2.77)

for all s > 0, when ||h|| → 0.
Making use of (2.77) and the lower bound from (2.76) one can show that

there exists a function h0 ∈ K such that for some finite k > 0

Hk[h0](s) ≥ h0(s), s ≥ 0, (2.78)

and furthermore, for any function h ∈ K such that h(s) ≤ h0(s), s ≥ 0, there exists
also a finite n such that

Hn[h](s) ≥ h0(s), s ≥ 0. (2.79)

Observe that H is monotone, i.e., if h1(s) ≥ h2(s) ≥ 0 for all s ≥ 0 then also

H[h1](s) ≥ H[h2](s)

for all s. This together with (2.78), (2.79) and (2.75) yields existence for all h ≤ h0

lim
k→∞

Hk[h](s) = lim
k→∞

Hk[h0](s) =: f0(s) for all s ≥ 0. (2.80)

Hence, by the construction f0 is a positive solution to (2.74).
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Suppose now that there exists another solution f ∈ K to (2.74), different
from f0. First we will show that in this case f should satisfy f (s) ≥ f0(s) for all
s ≥ 0.

Assume that on the contrary, some f ∈ K satisfies (2.74) but f (y) < f0(y)
for some positive y. Notice that we can always find a (small) function h ∈ K such
that

h(s) ≤ min{ f (s), f0(s), h0(s)}, s ≥ 0.

Then due to monotonicity of H

Hk[h](y) ≤ Hk[ f ](y) = f (y) (2.81)

for all k ≥ 1. But as k → ∞ the left-hand side in (2.81) converges to f0(y) due to
(2.80). Hence, our assumption f0(y) > f (y) leads to a contradiction in (2.81).

We conclude, that if there is a positive solution f to (2.74) then

f ∈ K0 := { f ∈ K : f ≥ f0}.
Observe, that for any function h ∈ K we have for all k

f0(s) − Hk[h](s) = H[ f0](s) − Hk[h](s)

= e−2λ A[ f0](s){2λ A[ f0 − Hk−1[h]](s) + O(|| f0 − Hk−1[h]||2)} (2.82)

when || f0 − Hk−1[h]|| → 0. Hence, convergence (2.80) tells us about the proper-
ties of the (linear) operator applied to f0 − Hk−1[h] in the principal term on the
right-hand side of (2.82). We conclude that convergence (2.80) which holds for
all h ≤ f0, should also hold whenever h ∈ { f ∈ K : || f − f0|| ≤ ε} with some
positive ε. Furthermore, consider now a similar decomposition for any h, f ∈ K0

Hk[h](s) − Hk[ f ](s)

= e−2λ A[ f ](s){2λ A[Hk−1[h] − Hk−1[ f ]](s) + O(||Hk−1[h] − Hk−1[ f ]||2)}
when ||Hk−1[ f ] − Hk−1[h]|| → 0. Observe that here, since f ≥ f0 we have

e−2λ A[ f ](s) ≤ e−2λ A[ f0](s).

Therefore convergence in (2.80) also implies that there is a uniform positive
ε such that if h, f ∈ K0 and || f − h|| ≤ ε then

Hk[h](s) − Hk[ f ](s) → 0,

as k → ∞. From here one can derive that f0 is the only fixed point on K for the
operator H since K consists of uniformly bounded functions.

We conclude that f0 is a unique positive solution to (2.74).
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2.4.4. The Size of the Giant Component

For any fixed ε > 0 we have due to the Chebyshev’s inequality

PV {|X (G(t)) − EV X (G(t))| > ε|V (t)|} ≤ VarV X (G(t))

ε2|V |2 , (2.83)

where according to (2.60) the variance

VarV X (G(t)) = EV

(∑
vs∈V

χ (vs)
)2

−
(

EV

∑
vs∈V

χ (vs)
)2

. (2.84)

Consider first

EV

(∑
vs∈V

χ (vs)

)2

=
∑
vs∈V

EV χ (vs)

 ∑
vτ ∈C(vs )

χ (vτ ) +
∑

vτ �∈C(vs )

χ (vτ )

 , (2.85)

where C(v) denotes a (random) connected component which includes the vertex
v. Recall, that according to our results the size of C(v) is at most k−, unless it is
the largest component in which case χ (v) = 0. Hence, only the small components
C(v) contribute in (2.85), and we have

EV

(∑
vs∈V

χ (vs)

)2

=
∑
vs∈V

EV χ (vs)

|C(vs)| + EV

 ∑
vτ ∈V \C(vs )

χ (vτ ) | C(vs)




=
∑
vs∈V

EV χ (vs)

o(|V |) +
∑
vτ ∈V

(EV χ (vτ ) + o(1))



=
EV

∑
vs∈V

χ (vs)

2

+ o(|V |) EV

∑
vs∈V

χ (vs) (2.86)

as |V | → ∞. Making use of (2.86) in (2.84) we obtain

VarV X (G(t)) =
(

1 + o(|V |)
)

EV

∑
vs∈V

χ (vs) =
(

1 + o(|V |)
)

EV

(
|V | − X (G(t))

)
= (1 + o(|V |)) (1 − β + o(1)) |V | , (2.87)

as |V | → ∞, where the last equality is due to (2.73). Substituting (2.87) into
(2.83) we get

PV {|X (G(t)) − EV X (G(t))| > ε|V (t)|} = o(1)
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as |V | → ∞, for any fixed ε > 0. In turn this implies

P

{∣∣∣ X (G(t))

|V (t)| − β

∣∣∣ < ε | V (t) = V

}
= 1 − o(1), as |V | → ∞, (2.88)

which together with (2.59) and (2.6) proves the second statement (1.2) of
Theorem 1.1. �
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10. P. Erdös and A. Rényi, On the evolution of random graphs. Publ. Math. Inst. Hung. Acad. Sci.
5:17–61 (1960).
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